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1. Introduction

The realization in [1] that simple theories like 4d N = 1 SYM theories with massive flavors

contain non-supersymmetric local meta-stable minima has triggered a lot of interest in this

phenomenon, and in particular in its realization in string theory.1 One possible embedding

is by considering configurations of D-branes at a Calabi-Yau singularity [3] (for earlier

related work on supersymmetry breaking in this kind of configurations, see [4 – 6]), or

1Meta-stable non-supersymmetric vacua had been discussed in the supersymmetry model building liter-

ature, see e.g. [2].
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wrapped on suitable cycles at a local Calabi-Yau [7].2 This has led to interesting steps in

the construction of string theory models of gauge mediated supersymmetry breaking [10]

(along the lines in [11]).

In this paper we explore a different realization, in terms of type IIA configurations

of NS-branes with D4-branes suspended between them, in the presence of D6-branes, and

of their lifts to M-theory. The realization of N = 1 SYM theories with flavors in this

setup, and the realization of Seiberg duality, are standard [12] (see [13] for a review), so

they provide a solid starting point for the discussion. We use these tools to construct the

non-supersymmetric local meta-stable minimum of SYM theories with unitary, orthogonal

or symplectic gauge groups (with massive flavors).

The lift to M-theory of the configurations corresponding to the supersymmetric vacua

of these theories has also been extensively discussed (see e.g. [14 – 16] for SU(Nc) SYM).

In these cases, the configuration lifts to a single smooth M5-brane wrapped on a holomor-

phic curve, which encodes important information concerning the non-perturbative infrared

dynamics of the theory.

A natural question is whether the information about the low energy dynamics of the

local meta-stable minima is also encoded in the M5-brane curve. We describe the main

properties of the M-theory lift of the type IIA configuration realizing this minimum. The

lift corresponds to a reducible M5-brane geometry, with two components which are holo-

morphic in different complex structures of the underlying geometry (which is a Taub-NUT

hyper-Kähler geometry), and hence are volume-minimizing by themselves. One of the

components has a number of free parameters, which correspond to pseudo-moduli of the

effective field theory. The mechanism that lifts the pseudo-moduli is not encoded in the

geometry of the curve, but rather these flat directions are removed only when the inter-

action between the two components (described in the large distance regime in terms of

exchange of gravitons and 3-form fields) is taken into account. Hence, the 1-loop stabiliza-

tion in the field theory maps to a process beyond the M5-brane probe approximation in

the M-theory configuration. This problem is very difficult with present techniques, hence

we simply sketch the main points, hoping for further progress in the future.

The realization of known non-supersymmetric local meta-stable minima in terms of

brane configuration leads to a precise identification of the key ingredients in this phe-

nomenon. This allows for many generalizations, and we present explicit construction il-

lustrating just a few. We provide the type IIA brane configurations corresponding to new

non-supersymmetric local meta-stable minima in SU(Nc) theory with non-chiral matter in

symmetric or antisymmetric representations (plus massive flavors), and in a chiral SU(Nc)

theory with chiral multiplets in the antisymmetric, conjugate symmetric and fundamental

representations (plus massive flavors).

The paper is organized as follows. In section 2 we review the field theory description

of the non-supersymmetric meta-stable vacua of [1]. In section 3 we describe the type IIA

configuration realizing the non-supersymmetric vacuum in the SU(Nc) theory with massive

2Gauge sectors of the kind described in [1] have been embedded also in heterotic compactifications

in [8, 9]. However, the existence of local meta-stable minima in these constructions, where gravity is not

decoupled, remains an open question.
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flavors, and discuss its classical properties. In section 4 we describe the M-theory lift of

this configuration and discuss the physics encoded (and not encoded) in the M5-brane

curve. In section 5 we describe the physical mechanism lifting the classical pseudo-moduli

of the non-supersymmetric vacuum, and its realization in string/M -theory. In section 6

we introduce O4-planes in the type IIA configurations to realize the non-supersymmetric

vacua in the SO and Sp theories. Further generalizations are constructed in section 7.

Section 8 contains our final remarks.

As we were finishing this paper [18] appeared, which overlaps with the results of

sections 3 and 5. After we finished this paper [19] appeared, which clarifies some aspects

of the discussion in section 4.

2. The ISS model

In this section we sketch the analysis in [1] to determine the existence of meta-stable vacua

in N = 1 SU(Nc) SYM with massive flavors. We refer the reader to this reference for

details.

Consider SU(Nc) SYM with Nf massive flavors Q, Q̃ with mass much smaller than

Λ, the dynamical scale of the gauge theory. Since the analysis is carried out in the dual

theory, we work on the free magnetic range Nc + 1 ≤ Nf < 3
2Nc so that the latter is IR

free and the Kähler potential is under control in the small field region.

The dual theory is SU(N) SYM with N = Nf −Nc, with Nf flavors q, q̃ and the mesons

Φ. They transform as (¤,¤, 1), (¤, 1,¤), (1,¤,¤) under the SU(N) × SU(Nf ) × SU(Nf )

color and flavor symmetry.

The superpotential is of the form

W = hTr ( q Φ q̃ ) − hµ2Tr Φ (2.1)

(where the traces run over flavor indices).

This theory breaks supersymmetry at tree level due to the F-term of Φ (the so-called

rank condition). There is classical moduli space of minima, parametrized by the vevs

Φ =

(

0 0

0 Φ0

)

q =

(

ϕ0

0

)

, q̃T =

(

ϕ̃0

0

)

, with ϕ̃0ϕ0 = µ21N. (2.2)

The computation of the Coleman-Weinberg one-loop effective potential shows that all

pseudo-moduli (classical flat directions not corresponding to Goldstone directions) are lifted

in the one-loop effective potential, and that the maximally symmetric point in the classical

moduli space

Φ0 = 0, ϕ0 = ϕ̃0 = µ1N, (2.3)

is a minimum of the one-loop effective potential.

As mentioned in [1], in the case of different flavor masses the local minimum is obtained

by setting the N non-zero dual quark vevs equal to the N largest masses. If a dual quark

vev is set to be one of the Nc smallest masses, the configuration is unstable already at the
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classical level, due to the appearance of a negative mass squared mode (which triggers the

rolling to the correct minimum).

The SU(N) gauge dynamics is IR free and hence not relevant in the small field region,

but it is crucial in the large field region. In fact, it leads to the appearance of the Nf −N

supersymmetric vacua predicted by the Witten index in the electric theory. In the large

field region of Φ vevs, |µ| ≪ |〈hΦ〉|, the Nf flavors are very massive, and we recover pure

SU(N) SYM dynamics, with a dynamical scale Λ′ given by

Λ′3N =
hNf detΦ

ΛNf−3N
(2.4)

where Λ is the Landau pole scale of the IR free theory. The complete superpotential,

including the non-perturbative SU(N) contribution is

W = N (hNf Λ−(Nf−3N) det Φ )1/N − hµ2 Tr Φ (2.5)

This superpotential leads to Nf − N supersymmetric minima at

〈hΦ〉 = Λm ǫ2N/(Nf−N) 1Nf
= µ

1

ǫ(Nf−3N)/(Nf−N)
1Nf

, (2.6)

where ǫ ≡ µ
Λ . In the regime ǫ ≪ 1, the vevs are much smaller than the Landau pole scale,

and the analysis can be trusted. Notice also that these minima sit at |〈hΦ〉| ≫ |µ|, hence

very far from the local non-supersymmetric minimum. This separation and the height of

the potential barrier make the meta-stable SUSY breaking vacuum long-lived.

3. Type IIA configuration

An efficient way to realize supersymmetric gauge field theories in string theory is to embed

them as the effective gauge theory on the world-volume of configurations of D- and NS-

branes. These Hanany-Witten setups [20] have been successfully employed in the study of

four-dimensional gauge theories with N = 2 and N = 1 supersymmetry (see e.g. [12, 23,

14 – 16] and [13] for a review with more complete references). In this section we describe

the type IIA brane configuration that corresponds to the ISS non-supersymmetric local

minimum, and understand some of its classical properties.

A convenient starting point is the type IIA brane configuration of N = 1 SU(Nc) SYM

with Nf flavors.3 We consider one NS-brane stretching along the coordinates 012345,

one NS-brane (denoted NS’-brane) stretching along 012389, Nc color D4-branes stretching

along 0123 and suspended in x6 between the NS- and NS’-branes, and Nf flavor D6-branes

stretching along 0123789. See [12, 13] for more details. We consider the configuration for

zero flavor masses (namely, the D6’s have all the same position as the NS’ in 45). The

configuration is shown in figure 1a.

3This configuration can be obtained from the one describing N = 2 SQCD with SU(Nc) gauge group by

rotating the NS’ (originally parallel to the NS) [21]. The relative angle θ between the NS and NS’ branes

dictates the mass of the adjoint chiral superfield |µ(θ)| = tan θ. In the limit in which the NS and NS’

become orthogonal µ → ∞. Integrating out the adjoint chiral superfield we are left with N = 1 SU(Nc)

SQCD with vanishing superpotential. Although this viewpoint is useful in the derivation of the M-theory

lift of the type IIA configuration, in this section we directly discuss the final rotated configuration.
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NS
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D4Nf

Nf D6Nf

D4

D4Nc

Nc fN   − Nc

NS

Figure 1: The type IIA brane configurations for SU(Nc) SYM with Nf (massless) flavors (a) and

its Seiberg dual theory (b).

Notice that the D4-branes can in general split in pieces as they are able to end on the

D6-branes. Notice also the familiar s-rule [20] which forbids that there are at most one

D4-brane piece connecting the NS-brane with a given D6-brane. The number of D4-brane

pieces connecting the NS’-brane with a given D6-brane is on the other hand arbitrary.

Following the operations in [12, 13], it is straightforward to obtain the brane configu-

ration describing the Seiberg dual theory. Sketchily, one considers moving the NS across

the D6-branes (process in which the Nc finite D4-brane pieces joining them disappear, and

Nf −Nc new finite D4-brane pieces appear), and then across the NS’. The final configura-

tion is shown in figure 1b. Notice the familiar realization of the meson vevs as the position

in 8, 9 of the Nf D4-branes pieces suspended between the D6-branes and the NS’-brane.

3.1 The SUSY breaking minimum

Let us now consider the type IIA configurations and the above processes in the presence

of non-zero flavor massless, by moving off the D6-branes in the directions 45. Consider for

simplicity the case where all flavor masses are equal.

The introduction of flavor masses corresponds in the magnetic field theory to the

introduction of the linear term in the mesons that triggers supersymmetry breaking. Recall

that there is a non-supersymmetric set of vacua, where the dual quarks have non-trivial

vevs (fixed by the flavor masses), and which is parametrized by pseudo-moduli encoded in

an Nc × Nc block of the mesonic matrix.

These features are nicely reproduced by the type IIA configuration. When the D6-

branes are moved off in 45, the Nf − Nc D4-branes joining them to the NS-brane move

along 45 and maintain the same supersymmetry. However, the Nf D4-brane pieces joining

them to the NS’-brane misalign with respect to them, leading to a non-trivial F-term.

The F-term can be partially canceled by recombining Nf − Nc of such D4-branes with

the D4-branes joining the D6- and the NS-branes. This recombination corresponds to the

fact that N = Nf − Nc entries in the dual quarks acquire non-zero vevs to minimize the

F-term. Notice that the appropriate breaking of the global symmetry is nicely reproduced.

For shortness, we sometimes denote D4’-branes the D4-branes suspended between the D6-

and the NS’-brane.

The configuration for the supersymmetry-breaking configuration is shown in figure 2.4

4This configuration is the starting point of our studies. It has been well investigated in the past in order

to study the deformation corresponding to adding terms linear in the mesons to the magnetic superpotential
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Figure 2: Type IIA brane configuration corresponding to the SUSY breaking minimum.

Notice that the Nf − Nc D4’-branes joining the D6-branes to the NS’-brane are free to

move in the directions 8, 9, hence reproducing (most of) the classical moduli space of non-

supersymmetric vacua of the field theory (notice that the pseudo-modulus θ is not manifest

in the geometry5).

It is very interesting to consider more general situations, with arbitrary non-zero

masses. Recall that in the field theory analysis in [1], the non-supersymmetric vacua

are obtained when the vevs for the dual quarks ϕ0, ϕ̃0 are given by the N largest masses

(out of the Nf mass parameters). In configurations where some vev is given by one of the

Nc smallest masses, a classically unstable mode appears.

This behavior is easily reproduced by the type IIA configuration. The different flavor

masses correspond to different 4, 5 positions for the different D6-branes. The brane setup

corresponding to the classical non-supersymmetric configuration suggested in ISS is shown

in figure 3. In this configuration, the Nc D4-branes connected to the NS’-brane end on the

Nc D6-branes which are closest (i.e. those associated with the Nc smallest mass parameters).

This is in order to minimize the energy of the configuration. In addition, the remaining

N D4-branes connected to the NS-brane, end on the farthest N D6-branes (i.e. those

associated with the N largest mass parameters). The reason for this is clarified in the next

paragraph. Recall that the position in 4, 5 of these D4-branes is related to the dual quark

vevs, so we have indeed found the configuration realizing the ISS vacuum for different

masses.

It is now easy to realize what goes wrong if one considers the configuration where a

dual quark vev is given by one of the Nc smallest masses. Clearly, there is one D6-brane

on which two D4-brane pieces (one connecting to the NS- and other to the NS’-branes)

coincide. Since these D4-branes are non-supersymmetric with respect to each other, an

open string tachyon develops at their intersection. This is precisely the unstable mode

which appears in the field theory analysis . Notice that the stretched open string leading

to the tachyon is a component of the meson field Φ, in agreement with this interpretation.6

(see for example [13]. The only new ingredient is to allow the rank of the quark mass matrix of the electric

theory (linear couplings in the magnetic dual) to be larger than Nc. This brane setup was discussed by

various attendants to a group meeting at the Institute for Advanced Study.
5The pseudo-modulus θ is defined such that 〈ϕ0〉 = µeθ

1N and 〈ϕ̃0〉 = µe−θ
1N [1].

6One may be surprised by the fact that an open string tachyon is captures by a field theory analysis.
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Figure 3: The non-supersymmetric type IIA configuration reproducing the non-supersymmetric

ISS field theory minimum for arbitrary flavor masses.

Notice also that this tachyon only appears at the origin in the mesonic (pseudo)moduli

space, in agreement with the field theory analysis. However one cannot try to avoid this

classical instability by moving off in the (pseudo)moduli space, since quantum corrections

(see later) lift it dynamically pushing the configuration towards the origin.

The above brane configuration can also be used to study the situation of SQCD with

Nf,0 massless and Nf,1 massive flavors. These models have been discussed in [3] from

the field theory viewpoint. In particular, it was shown that the magnetic dual exhibits

supersymmetry breaking by the rank condition for Nf,0 < Nc, and that in this case one

does not have a meta-stable minimum, but rather a saddle point with a runaway direc-

tion parametrized by the mesons formed by the massless quarks (and which becomes the

runaway triggered by the Affleck-Dine-Seiberg superpotential in the large field region).

The above brane configuration provides a simple explanation of these facts. We con-

sider the type IIA brane configuration in which Nf,0 D6-branes sit at the origin in the

directions 4, 5. If Nf,0 < Nc, then N = Nf − Nc < Nf,1 and there are some of the Nf,1

D6-branes associated with non-zero masses which are not endpoints of the N D4-branes

in the D4/NS5 system. These D6-branes can be used as endpoints of the D4-branes in

the D4/NS’ system and lead to non-supersymmetric configurations. If on the other hand

Nf,0 > Nc, then N > Nf,1 and the N D4-branes in the D4/NS system occupy all the Nf,1

massive flavor D6-branes (and some more). Hence the D4-branes in the D4/NS’ system are

forced to end on the massless flavor D6-branes, leading to a final supersymmetric configu-

ration. Thus one reproduces the above mentioned condition to have rank supersymmetry

breaking.

The above discussion leads to an important observation. There is a dynamical ‘s-

rule’ in the non-supersymmetric configurations of our interest, which prevents a D4-brane

and a D4’-brane to end on the same D6-brane. Although more manifest in the case of

different masses, this conclusion is general and valid in the case of equal masses. This has

an important implication on the structure of the M5-brane describing the M-theory lift of

our type IIA configurations.

3.2 The SUSY breaking minimum in the electric theory

Once we have identified the structure of the supersymmetry breaking meta-stable mini-

In fact, similar phenomena occur in other non-supersymmetric tachyonic D-brane configurations, in the

regime of small supersymmetry breaking, see e.g. [22].
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Figure 4: Figure (a) shows the brane configuration describing the supersymmetric minimum of

the electric theory. Figure (b) shows the supersymmetry breaking meta-stable vacua in the brane

configuration realizing the electric theory.

4,5

6

8,9

D4

NS

NS’

D6 Nf
N D4

Nf

Figure 5: Brane configuration describing the ϕ0 = ϕ̃0 = 0 point used to estimate the height of the

potential barrier.

mum in the brane configuration realizing the magnetic theory, it is possible to obtain it

in the brane realization of the electric theory. This is simply obtained by undoing the

Seiberg duality, namely by crossing back the NS’- and NS-branes. The resulting config-

uration is shown in figure 4.b. The supersymmetric configuration corresponding to the

supersymmetric minima of the theory is shown in figure 4.a.

3.3 Longevity of the meta-stable SUSY breaking vacuum

As discussed in [1], the longevity of the meta-stable SUSY breaking vacuum depends on its

distance to the SUSY vacua in field space and the height of the potential barrier separating

them. Both of them can be estimated by considering a simple trajectory connecting the

minima.

The separation between vacua is determined by the expectation value of Φ at the

supersymmetric minimum, the type IIA brane setup provides a simple visualization of the

barrier height. The ϕ0 = ϕ̃0 = 0 point corresponds to no recombination of the D4-branes.

The increase in length of the branes accounts for the additional potential energy.

4. M-theory lift

In the realization of 4d gauge theories using type IIA brane configurations, many interesting

properties of the field theory are unveiled by lifting the configurations to M-theory [23, 14 –

– 8 –
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16] (see [13] for a review). The supersymmetric vacua of the theory are easily determined

in M-theory. Theories that exhibit dynamical supersymmetry breaking have been stud-

ied in this context in [17]. In this section we describe the M-theory lift of our type IIA

configurations. For simplicity we focus on the situation where all flavor masses are equal

(generalization to different masses is straightforward when the N largest masses are ar-

bitrary, but the Nc D6-branes corresponding to the smallest masses are coincident, see

later).

4.1 The factorization

In the lift to M-theory, D4-branes and the NS- or NS’-branes on which they end become

different parts of a single smooth M5-brane, wrapped on a complex curve in the ambient

space (which is given by an Nf -centered Taub-NUT geometry, corresponding to the M-

theory lift of the Nf D6-branes). In this section we investigate what is the M-theory

configuration that describes the SUSY breaking meta-stable minimum. From the structure

of the type IIA configuration corresponding to the non-supersymmetric vacuum, one can

draw an important conclusion: the M5-brane curve in the lift of the configuration is split

into two components. This follows from the fact that the D4-branes ending on the NS-brane

are completely disconnected from the D4-branes ending on the NS’-brane. This implies

that the D4/NS system and the D4’/NS’ lift to two independent M5-brane curves.

Notice moreover that in the case of equal masses each system by itself preserves some

supersymmetry (more precisely, in order for this to happen the D6-branes connected to

D4’-branes must be coincident). Namely, the D4/NS system preserves 8 supercharges in

the presence of the D6-branes, while the D4’/NS’ system preserves 4 supercharges in the

presence of the D6-branes.7 Notice however that the supersymmetries preserved by both

systems are not compatible, and the complete configuration breaks all supersymmetries.

This structure has a beautiful counterpart in the M-theory lift. The geometry in

the M-theory lift is given by a Taub-NUT geometry, which is hyper-Kähler. Therefore it

admits a P1 of complex structures. The two different M5-brane components corresponding

to the lifts of the D4/NS and the D4’/NS’ systems correspond to M5-branes wrapped on

two curves which are holomorphic in two different complex structures in this geometry.

The rotation between the two complex structures in which the two curves are holomorphic

is related to the amount of supersymmetry breaking (namely, to the angle between the

D4- and D4’-branes in the type IIA configuration). Being holomorphic in some complex

structure, each component is volume minimizing by itself. However, the complete system

can be regarded as an M5-brane on a singular (i.e. reducible) non-holomorphic curve, which

is therefore not volume-minimizing as a whole.

The M-theory state we build reduces at vanishing string coupling to the type IIA

configuration we have studied. Interestingly, it captures various features of the IIA con-

figuration such as its pseudo-moduli. Nevertheless, it is important to notice that this

M-theory lift possesses non-holomorphic boundary conditions. The asymptotic behavior

7For general masses, the former system is still supersymmetric, while the latter breaks all supersymme-

tries unless the D6-branes for the Nc smallest masses are coincident.
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of our M-theory curve differs from the one of the M-theory lift of the supersymmetric con-

figuration (in particular it does not preserve supersymmetry even asymptotically). As a

result, it cannot be interpreted as a state with spontaneously broken supersymmetry in a

supersymmetric 4d theory. Instead, it corresponds to a state in a theory with a Lagrangian

that breaks supersymmetry explicitly. This issue was investigated in detail in [19].

4.2 The curves

Following the argument above, we are led to describe the M-theory lift in terms of two

curves which are holomorphic in two different complex structures of the Taub-NUT geom-

etry (again, notice that this assumes a supersymmetric D4’/NS’ system, hence that the

corresponding Nc D6-branes are coincident).

In order to consider the lift of the D4/NS system, let us introduce an adapted complex

structure, in which the corresponding M5-brane curve is holomorphic. In fact the system

is locally N = 2 supersymmetric, hence we may stick to the usual conventions for lifts of

configurations of 4d N = 2 theories [23]. Let us introduce v = x4 + ix5, w = x8 + ix9, and

describe the ambient M-theory Taub-NUT geometry as the complex manifold

yz =

[ N
∏

i=Nc+1

(v − µi)

]

(v − µ)Nc (4.1)

where (µNc+1, . . . , µNf
) correspond to the N largest mass parameters and µ < µi is the

common mass parameter for the Nc lightest flavors. Notice that the mass parameters

encode the positions of the D6-branes (or of the Taub-NUT centers in M-theory) in the

4, 5 directions.

In these complex coordinates, the holomorphic curve corresponding to the D4/NS

system has the structure

z −
N
∏

i=Nc+1

(v − µi) = 0

w = 0 (4.2)

Hence, the M5-brane has spikes towards z → 0 at the positions v = µi. These spikes

become the D4-branes upon reduction to type IIA. The interpretation for these spikes is

that v → µi corresponds to the cycle yz = 0 in the ambient Taub-NUT. This is reducible,

and z = 0, y arbitrary, describe one component, corresponding to a spike ending on the

Taub-NUT center (from the right).

The lift of the D4’/NS’ component is also easily described, in the case of a common

mass for the lightest flavors, on which we are centering. The system is locally N = 1

supersymmetric, so it is described by a holomorphic curve in adapted complex coordinates.

Intuitively we introduce v′ = x′
4 + ix′

5, where x′
4 and x′

5 parametrize the 2-plane orthogonal

to the x′
6 direction along which the D4’-branes stretch. Similarly we need to introduce

new complex parameters µ′
i, µ′ which encode the positions of the D6-branes in the v′

direction. The mapping of complex coordinates in different complex structures (rotated
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by the SU(2) isometry of the Taub-NUT geometry, equivalently the SO(3) rotation in the

space parametrized by 4, 5, 6), and of different complex parameters specifying the D6-brane

positions, is somewhat technical, but we provide its description in appendix A.

In the complex structure adapted to the D4’/NS’ system, the Taub-NUT geometry is

described by

y′z′ =

[ N
∏

i=Nc+1

(v′ − µ′
i)

]

(v′ − µ′)Nc (4.3)

In these complex coordinates, the holomorphic curve describing the lift of the D4’/NS’

system is

z′ −
Nc
∏

i=1

(w′ − w′
i) = 0

v′ = 0 (4.4)

Namely the M5-brane has spikes of order Nc towards x′
6 → −∞ (i.e. z′ → 0) at the position

w′ = w′
i. The parameters w′

i are free moduli of the holomorphic curve, and correspond to

the mesonic field theory pseudo-moduli. Hence they remain as flat directions even in the

M-theory lift.

It would be interesting to describe the lift of the type IIA configuration for completely

general mass parameters, in particular when the D4’/NS’ system is non-supersymmetric

by itself. We leave this interesting point for future work.

Being holomorphic in some complex structure, the above curves are automatically

area-minimizing, and hence indeed correspond to the a classical stationary configuration

for the M5-brane configuration, in the probe approximation. We will describe in section 5

the impact of possible backreaction effects in the curves, and on the pseudo-moduli stabi-

lization.

We conclude with a final remark. Notice that the positions of the D6-branes in 6 enter

in the determination of the complex parameters µ′, µ′
i, and hence appear in the expression

of the curve. It is a familiar fact that in supersymmetric vacua such positions are hidden

parameters of the brane configuration which are not visible in holomorphic quantities of

the gauge theory. Hence it is not unexpected that they pop up as relevant quantities

when dealing with a non-supersymmetric vacuum. It would be interesting to gain a better

understanding of the interplay of gauge theory quantities and these parameters.

4.3 A heuristic argument

We would like to conclude with a suggestive heuristic derivation of the factorized structure.

In the field theory description, the ISS construction of the local minimum can be obtained

by starting with the electric theory, moving on to the magnetic dual and taking the limit

in which the gauge interactions vanish. This procedure can be carried out in the M-

theory description of the configuration, providing independent evidence for the factorized

structure.
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The infrared physics of the electric theory is described by the M5-brane wrapped on

the holomorphic curve obtained in [14],

t = wNc−Nf (w − w0)
Nf (4.5)

v w = m w0 (4.6)

with

w0 =





Λ
3Nc−Nf

SQCD

mNc−Nf





1/Nc

(4.7)

where t is related to the usual variable used in N = 2 configurations by a rescaling by µNc ,

with µ the adjoint mass that goes to infinity in the N = 1 limit. The value of w0 determines

the expectation value of the mesons at the supersymmetric vacua. It is straightforward to

rewrite w0 in terms of magnetic quantities.

The two equations defining the curve can be rewritten to clarify how the curve relates

to the lifts of the NS and NS’. Rewriting (4.5) as

t − wNc−Nf (w − w0)
Nf = 0 (4.8)

we see Nc D4-branes ending on the NS’-brane (from the left). Combining (4.5) and (4.6)

we obtain
(

mNf−Nc

wNc

0

vNc

)

t − (m − v)Nf = 0 (4.9)

showing Nc (resp. Nf ) D4-branes ending on the NS-brane (from the right resp. left).

As mentioned above, in the field theory one constructs the non-supersymmetric vacuum

by going to the magnetic dual and turning off the magnetic gauge interactions. In order to

heuristically perform this operations in terms of the M5-brane curve, it is useful to rewrite

quantities in terms of magnetic variables, which are related to the electric ones by

Λ
3Nc−Nf

SQCD Λ3(Nf−Nc)−Nf = Λ̂Nf ; h = Λ/Λ̂ ; µ2 = −m Λ̂ (4.10)

We then have

m = −
hµ2

Λ
; w0 =

(

ΛNc+(3Nc−2Nf )

(−µ2)Nc−Nf hNc

)1/Nc

(4.11)

m w0 =
(

(−µ2)Nf Λ3Nc−2Nf
)1/Nc

(4.12)

The non-supersymmetric vacuum appears in the magnetic theory when we take the classical

limit, turning off the gauge interactions. Hence, we are interested in the limit Λ → 0 with

h and µ fixed. In this limit

m ∼ Λ−1 → ∞

w0 ∼ Λ1+(3Nc−2Nf )/Nc → 0

m w0 ∼ Λ(3Nc−2Nf )/Nc → 0

(4.13)
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where we have explicitly used that we are working on the free magnetic range Nc + 1 ≤

Nf < 3
2Nc. With this, (4.6) becomes

v w → 0 (4.14)

We thus see that the curve splits into two components. One of them (associated with the

D4’/NS’ system in the type IIA configuration) corresponds to v = 0 and is given by the

limit of (4.8). The other one (associated with the D4/NS system) has w = 0 and is given

by the limit of (4.9). These curves have the expected behavior i.e. for the first one t ∼ wNc

as w → ∞ and for the second one t ∼ vNf−Nc = vN as v → ∞.

The argument is heuristic since the curve cannot completely agree with the complete

M5-brane curve that we have determined in previous sections. This is because the holo-

morphic curve remains holomorphic in the limit. However, the naive translation of the ISS

field theory construction to the M5-brane curve does have a suggestive structure. Indeed

the curve reproduces the correct structure to the best extent that one can expect from

a holomorphic curve! Namely, it factorizes into two components which have the correct

number of spikes ending on the correct NS/NS’ fivebranes. The only caveat is that the two

components are holomorphic in the same complex structure. Our interpretation is that,

since the holomorphic curve of the supersymmetric vacuum is insensitive to the positions

of the Taub-NUT centers in the x6 direction, it reproduces the correct structure for the

non-susy vacuum in the limit where the centers are sent off to x6 → −∞ (in which it

becomes holomorphic). In a sense, it is the only regime where the holomorphic curve can

be expected to match the M5-brane curve of the non-supersymmetric vacuum.

In order to have a closer look at the factorized holomorphic curve arising in the limit,

it is useful to introduce the rescaled variables

t̃ = t/wNc

0

ṽ = v/m

w̃ = w/w0

(4.15)

The two components that follow from (4.8) and (4.9) become

t̃ − w̃Nc = 0 (4.16)

ṽNc t̃ − (1 − ṽ)Nf = 0 (4.17)

They represent the two components elongating to infinity with different asymptotic

behavior in ṽ. It is easy to realize that they agree with the two components of our M5-

brane curve in previous sections, in a suitable limit (in which in particular the two complex

structures become the same).

5. Pseudo-moduli stabilization

We have shown that the field theory pseudo-moduli correspond to geometric moduli of type

IIA configuration. They moreover remain flat directions in the M-theory configuration, at

least in the case where the D4’/NS’ system is supersymmetric, where we could determine
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the structure of the curve. Hence the quantum gauge theory effects encoded in the M-theory

curves do not include the 1-loop correction lifting these accidental flat directions.

In fact it is easy to understand what the mechanism responsible for the stabilization

is. The fields that contribute to the field theory 1-loop Coleman-Weinberg potential are

classically massive fields whose mass depends on the pseudo-moduli. In the type IIA brane

configuration, the pseudo-moduli are the geometric positions of D4’-branes in 8, 9. Clearly,

the classically massive fields whose mass depends on these positions are D4-D4’ and D4’-

D4’ open strings. However, the D4’-D4’ open strings are not sensitive to the breaking

of supersymmetry and do not contribute, hence only the D4-D4’ states contribute. The

Coleman-Weinberg potential then corresponds to the annulus diagram with boundaries on

the D4- and D4’-branes. Hence the lifting of pseudo-moduli is an effect that cannot be

detected from the study of the D4/NS or D4’/NS’ systems in isolation, but which arises

from their interaction.

Due to the complicated geometry (and the presence of the NS- and NS’-branes) this

diagram cannot be computed for arbitrary locations of the D4’-branes. In the small dis-

tance regime, its result should reproduce the field theory result. Unfortunately the brane

configuration does not seem to provide new insights in this regime. On the other hand,

in the large distance regime, the annulus diagram corresponds to the exchange of super-

gravity modes (graviton, dilaton and 5-form exchange) between the D4- and D4’-branes.

Being non-supersymmetric, it is expected that the gravitational exchange overcomes the

RR-form repulsion (which is smaller due to the misalignment of the D-branes) and lead to

a net attraction, which pushes the D4’-branes towards the origin in 8, 9. This is the string

theory view of the lifting of the pseudo-moduli, in the large field region of pseudo-moduli

space.

The above discussion can be lifted to M-theory. Each M5-brane component is area-

minimizing by itself, and the component corresponding to the lift of the D4’/NS’ system

has arbitrary moduli. Their lifting can be described in terms of the interaction between

the two components, which in the long distance regime reduces to graviton and 3-form

exchange. This implies that the lifting of moduli requires describing the configuration be-

yond the brane probe approximation. In principle, a quantitative computation of this effect

could be achieved by considering the backreaction of the M5-brane component associated

with the D4/NS system, and solving the area minimization equations, in the backreacted

background, for the M5-brane component associated with the D4’/NS’ system. A similar

approach was used in [14], where the above procedure to compute supergravity interactions

between different M5-brane components provided certain correction to the metric on the

Higgs branch of N = 2 gauge theories. The reduced (in fact, absence of) supersymmetry

in our present problem clearly suggest that the computation is might be considerably more

difficult and beyond the scope of this paper. We hope to come back to this point in future

work.

6. Symplectic and orthogonal gauge groups

It is straightforward to carry out a similar discussion for the non-supersymmetric minima
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in the SO(Nc) and USp(Nc) theories with Nf massive flavors. In fact, the type IIA con-

figurations realizing these gauge theories, and their Seiberg duality properties, have been

studied in [24]. We sketch the new features of this construction, referring the reader to this

reference (see also [13] for a review) for details.

The construction of the electric theories combines the same ingredients as for the

SU(Nc) theory (namely, Nc D4-branes suspended between an NS- and an NS’-brane, in

the presence of Nf D6-branes), plus an additional O4-plane, stretching along the directions

01236 (i.e. parallel to the D4-branes). The O4-plane flips its charge as it crosses the NS-

and NS’-branes.

The introduction of the O4-plane pairs up the D4-branes in two sets, related by the

orientifold symmetry, and reduces their gauge symmetry down to SO(Nc) or USp(Nc) when

the middle piece of the O4-plane has negative or positive charge, respectively. Similarly,

the D6-branes pair up and reproduce the appropriate global symmetries for these gauge

theories. Finally notice that for odd Nc the SO(Nc) configuration has an unpaired D4-brane

on top of the middle part of the O4-plane, while for the USp(Nc) configuration this is not

possible (see [25, 26] for details). Notice that our notation for the number of D-branes is

dictated by counting on the covering space. In this convention, the O4-plane charge is ±4

D4-brane charge units.

Seiberg duality is obtained by moving the NS across the D6- and the NS’-brane. In the

process, there is a change in the number of D4-branes which determines the final number

N of D4-branes joining the D6-branes and the NS-brane (which controls the rank of the

Seiberg dual gauge group). Since there is a contribution of the O4-plane charge to this

Hanany-Witten effect, one obtains N = Nf −Nc +4 for SO and N = Nf −Nc−4 for USp.

Using these rules one can directly construct the type IIA configuration corresponding

to the non-supersymmetric minima for the SO and USp theories described in [1]. It is

shown in figure 6. As in the SU case, it is possible to match all classical properties of the

field theory with geometric properties of this configuration.

An important difference is that the D4’/NS’ system is non-supersymmetric by itself

(even in the case of equal flavor masses). In particular one may be worried by the fact that

we have several D4-branes at angles which seemingly intersect (as they reach the NS’-brane)

and could potentially lead to tachyons. One may think that the presence of the O4-plane

imposes an orientifold projection that removes them; however, given that the tachyonic

modes have a matrix structure, they cannot be completely removed by such orientifold

projection, which at most projects the matrix down to the symmetric or antisymmetric

components. The key ingredient must therefore be the presence of the NS’-brane. Indeed,

the presence of such object at the coincidence of the D4-branes can prevent the naive claim

that there is an open string tachyon in the D4-D4 spectrum. In the following we assume

that this is indeed the case (as suggested by its agreement with the field theory picture that

no instability exists) and proceed to use this additional rule in our subsequent examples.

It would be interesting to provide further support for it based on computations of open

string spectra in the near horizon region of NS-branes as in [27].

As in the SU case, the construction shows that the lift to M-theory is given by an M5-

brane wrapped on a reducible curve. An important difference is that, since the D4’/NS’
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4,5

8,9

6

fN   /2 D6

fN   /2 D6

NS

f(N   − N)/2

+/−O4 O4−/+O4−/+

f(N   − N)/2
D4  

D4  

NS
N/2 D4  

N/2 D4  

Figure 6: The type IIA brane configuration for the non-supersymmetric minimum of the SO(Nc)

and USp(Nc) gauge theories with Nf massive flavors. For clarity we have shown the situation for

different flavor masses. The red line corresponds to the O4-plane, and its change of charge as it

crosses the NS- and NS’-branes is shown as a change between dashed and solid. For the SO(Nc)

theory we have N = Nf − Nc + 4, and it corresponds to choosing the O4-plane to have negative

charge in the middle interval, and positive on the semi-infinite pieces. For the USp(Nc) theory we

have N = Nf − Nc − 4 and the O4-plane charge is positive in the middle interval.

system is non-supersymmetric by itself (even in the case of equal flavor masses), it lifts to

an M5-brane component which is not holomorphic (in any complex structure). We leave

this discussion for future work.

7. Generalizations

The realization of known non-supersymmetric local meta-stable minima in terms of brane

configurations leads to a precise identification of the key ingredients in this phenomenon.

In this section we use this ingredients to construct non-supersymmetric local meta-stable

minima in other field theories which admit a realization in terms of type IIA brane config-

urations.8 Clearly there are many other possibilities, which we leave as an exercise for the

reader.

SU(Nc) with non-chiral matter in the or

The type IIA brane realization of the SU(Nc) with non-chiral matter in symmetric or

antisymmetric (plus additional flavors) has been achieved in [28], by the introduction of

O6-planes (along 0123789). Using the ingredients in these configurations, and the basic

building blocks of non-supersymmetric meta-stable minima, it is straightforward to con-

struct a brane configuration realizing a non-supersymmetric meta-stable vacuum in these

theories. The configuration is shown in figure 7.

8We do not study the supersymmetric vacua, longevity of the meta-stable minimum, etc. This would be

an interesting exercise. We consider the similarity of the brane configurations with those in the previous

sections makes it clear that these issues will not change much.
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D4 D4

NS

Nf

NS’ D4

D6

O6NS’

D6

4,5

6

8,9

D4

Figure 7: The type IIA brane configuration describing the non-supersymmetric meta-stable min-

imum in the SU(Nc) theory with non-chiral matter in the symmetric or antisymmetric representa-

tions (corresponding to the choice of positive or negative O6-plane charge), plus massive flavors.

4,5

8,9

6

O6/D6

NS

D4

D4

NS
NS

D4

D4

Figure 8: The type IIA brane configuration describing the non-supersymmetric meta-stable min-

imum in the chiral SU(Nc) theory with matter in antisymmetric, conjugate symmetric and funda-

mental representations. Here O6/D6 stands for the system of the split O6-plane and the 8 half

D6-branes.

Chiral SU(Nc) theory with chiral multiplets in the + + 8¤

We would like to present one example of a chiral theory with a non-supersymmetric meta-

stable vacuum. Although type IIA brane configurations are not particularly well suited for

the construction of chiral theories (and configurations of D3-branes at singularities may pro-

vide a better starting point [3]), there is a type IIA configuration realizing a chiral SU(Nc)

theory with one chiral multiplet in the antisymmetric, one in the conjugate symmetric, and

8 in the fundamental representations [29 – 31]. The configuration contains two NS- and one

NS’-brane, with an O6-plane passing through the latter. The key ingredient for producing

chirality is that the O6-plane is split into two pieces by the NS’-brane, with both pieces

carrying different charge. In order to cancel an NS’-brane worldvolume tadpole, one needs

to introduce 8 half D6-branes ending on the latter (see related discussions in [32, 33]).

The construction of the configuration realizing the non-supersymmetric meta-stable

vacuum is fairly easy. The only subtlety is that, since the NS’-brane must be on top of

the O6/D6 system, it is convenient to use the configuration where the local minimum is

described in the electric theory. The configuration is shown in figure 8, where O6/D6

stands for the system of the split O6-plane and the 8 half D6-branes.

As should be clear by now, any type IIA brane configuration can be modified to include

the basic ingredients involved in the appearance of the non-supersymmetric meta-stable

minima. It is therefore straightforward to generalize to product gauge group theories, etc.
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We refrain from entering a more detailed discussion of these possible generalization, leaving

them for the interested reader.

A last word of caution is appropriate. The meta-stable vacua we are studying occur

at small expectation values of fields. In order to be certain of their existence it is thus

crucial to have the Kähler potential under control such that we can ensure that it remains

regular. This is achieved in these examples when the macroscopic magnetic description

of the theory is IR free. This is easily attainable in the SO(N) and USp(N) examples of

section 6. From the point of view of the electric theory, the free magnetic ranges correspond

to Nf < 3
2(Nc − 2) for SO(Nc) with Nf flavors and Nf < 3

2(Nc + 1) for USp(Nc) with 2Nf

flavors. We are confident that it is possible to find free magnetic ranges in generalizations

such as the theories described in this section by appropriately tuning the numbers of colors

and flavors in the magnetic theories. Most of what is currently known about many of these

field theories comes from their realization by means of D-brane setups, which yield no

information about the free magnetic and other ranges. On the other hand, our experience

with the factorization of the M-theory curve in section 4.3 suggests that some understanding

of these problems might follow from the M-theory lift.

8. Final remarks

In this paper we have described the construction of type IIA brane configurations which

realize non-supersymmetric meta-stable vacua of 4d N = 1 supersymmetric gauge theory.

The realization of these vacua for the field theory examples in [1] allows us to identify the

key ingredients of the brane configuration related to the existence of these vacua. And

hence to generalize the construction to many other brane configurations and field theories.

We have also provided a description of the lift of these configurations to M-theory, in

terms of M5-branes wrapped on a reducible curve. In the simplest situation (where some

mass parameters are equal) its components are holomorphic in different complex structures

of the underlying Taub-NUT geometry. We have argued that a complete understanding

of the physics of the local minimum, in particular of the lifting of the pseudo-moduli,

requires a description beyond the brane probe approximation, namely taking into account

the interaction between the two components. The quantitative treatment of this problem

thus remains an important open issue in these constructions.

It would be interesting to find connections between the constructions we have presented

in this paper, and the discussion of non-supersymmetric meta-stable vacua for gauge the-

ories on systems of D-branes at singularities. It is possible that T-duality relations along

the lines of [34, 35] provide a bridge between both languages.

We expect much progress in the understanding of these non-supersymmetric meta-

stable vacua from their realization in string theory.
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A. The hyper-Kähler structure of Taub-NUT and rotation of the holo-

morphic structure

A.1 Hyper-Kähler construction of the multicenter Taub-NUT spaces

Let us describe the (multicenter) Taub-NUT space as a hyper-Kähler quotient, following

the reasoning in [36]. In order to build the Taub-NUT in this way, we start from the

manifold M given by d + 1 copies of H, where d is the number of centers in our space

and H is a copy of R4 with flat hyper-Kähler metric. Let us take as coordinates in M the

quaternions w and qa, where a goes from 1 to d.

Now consider the abelian group G of rank d acting on the manifold, this group is

isomorphic to Rd locally. The moment map for this group acting on M is given by

µa =
1

2
ra + y, (A.1)

where ra = qaiq̄a (no sum in a, and boldface denotes three dimensional vectors) and

y = (w − w̄)/2. Under the a-th factor of G, qa transforms with a +1 U(1) charge, w gets

translated and the rest of the coordinates remain invariant. Let us consider the set of

vectors ea. Then we define our Taub-Nut space as:

X = µ−1(e)/G, (A.2)

where the a index is implicit. Namely, we consider all points in M such that their moment

maps µa give ea, and then quotient the resulting space by the action of G. With the metric

inherited from the flat M one gets the multi center Taub-NUT space with the standard

metric:

ds2 =
1

4
V dr2 +

1

4
V −1(dτ + ~ω · dr)2, (A.3)

with ∇× ~ω = ~∇V and

V = 1 +

d
∑

a=1

1

|r − ea|
, (A.4)

so we can identify the values of the moment maps with the positions of the centers of the

Taub-NUTs.

A.2 Complex structure for these spaces

In this section we will try to understand better the structure as a complex manifold of

the space we just built following [23]. Recall that a quaternion can be written as q =

a + ib + jc + kd, where i, j and k satisfy the SU(2) Lie group algebra, so we can think of

them as the Pauli matrices, and a, b, c and d are real numbers. This structure reflects the

hyper-Kähler nature of the manifold, we can associate choosing a complex structure (in

the S2 of possible complex structures) with privileging i, say, and then decomposing the

quaternion q into two complex numbers w1 and w2 given by:

w1 = a + ib (A.5)

w2 = c + id, (A.6)
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the decomposition being motivated by q = a + ib + j(c + id). We have the freedom of

choosing any combination of i, j and k as determining a complex structure, so we have

essentially the freedom of choosing a direction in R3. Note also that the 3-vector structure

of the moment maps also comes from ijk, so rotating the directions of the base space for

the Taub-NUT (i.e., ordinary rotations in the type IIA picture) roughly corresponds to

choosing different complex structures. This will be the basic idea in what follows.

Let us privilege a complex structure and then separate qa into the complex variables

ya and za, and w into v and v′, such that the action of G in these complex variables is

given by:

ya → eiθaya (A.7)

za → e−iθaza (A.8)

v → v (A.9)

v′ → v′ −
d

∑

a=1

θa. (A.10)

Also, when we pick a complex structure, namely a direction in 3 space, the moment

map can be divided into the longitudinal part (a real part µR) and a transverse (complex)

part µC. In the type IIA picture the latter corresponds to the projection of the D6 brane

position into the 4, 5 plane in which the NS brane is sitting, and the former to the x6

position of the brane, which as we will see below does not appear in the defining equations

for the NS factor of the M theory curve in the complex structure in which it is holomorphic.

The components of µC, a give the equations:

yaza = v − ea, (A.11)

where ea is the projection of ea in the 4, 5 plane. We can define then the manifold X in

terms of the G invariants and any constraints between them. In terms of the invariants

y = eiv′
∏d

a=1 ya, z = e−iv′
∏d

a=1 za and v, the defining equation for the resulting space is

given by:

yz =

d
∏

a=1

(v − ea), (A.12)

which is the equation we have been using in the main text for the Taub-NUT.

A.3 Rotating the complex structure

We have described how to obtain the equations for the Taub-NUT in a given complex

structure, but in our system there are two different relevant complex structures with no

holomorphic relation between them, and we expect that the y, z and v parameters describ-

ing the Taub-NUT in the complex structure in which the NS factor of the M theory curve

is holomorphic have a complicated non-holomorphic relation with the parameters y′, z′ and

v′ describing the curve in the complex structure where the NS’ factor is holomorphic. In

this section we describe how to obtain explicit relations between both sets of coordinates.
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The basic idea has already been described. What we notice is that rotations of the

moment maps have two interpretations, one as rotations in the space of complex structures

of the hyper-Kähler manifold and the other as rotations in the Type IIA theory. Since in the

type IIA theory the rotation necessary for going from the direction associated with the NS

factor being holomorphic (i.e., x6) to the direction in which the NS’ factor is holomorphic

(x6 cos θ+x4 sin θ, where θ is the rotation angle, given by the masses and the position in x6

of the D6 branes) is easy to determine with simple trigonometry, the appropriate change

in complex structure is simple to determine too. For example, let us identify the ijk

directions in quaternion space with the 6, 4, 5 directions in the type IIA picture. With this

convention, the complex structure making the NS factor holomorphic is given by privileging

i, and splitting the quaternionic coordinates as qa = (a + ib) + j(c + id) = (ya, za). Now

we rotate in order to obtain the expressions in the coordinates where NS’ is holomorphic.

The effect in ijk is given by:







i

j

k






→







cos θ − sin θ 0

sin θ cos θ 0

0 0 1













i

j

k






≡







I

J

K






. (A.13)

We now want to split the moment maps into complex coordinates where I is the

privileged complex structure. We just substitute and read components, let us do it for

some generic q:

q = a + bi + cj + dk = a + b(I cos θ + J sin θ) + c(J cos θ − I sin θ) + dk (A.14)

= a + I(b cos θ − c sin θ) + J(b sin θ + c cos θ + Id). (A.15)

From here we read what the new y and z are, and since we have the expressions of abcd in

terms of the original y and z (for example, b = −i/2(y − ȳ)), this completely determines

the new variables as non-holomorphic functions of the old ones and the θ angle.
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